

Parallelism in IC-Ferst

James Percival

AMCG, Department of Earth Science and Engineering Imperial College London

IC-Ferst Training 2015

< □ > < □ > < □ > < □ > < □ > < □ >

AMCG

Parallelism in IC-Ferst; James Percival

Parallel Simulations

- Modern computers process calculations faster by dividing operations into separate jobs solved concurrently ("in parallel") by multiple processing units.
 - Multiple paradyms:
 - Distributed memory : each job (process) on its own "computer". Need to communicate information across network.

- Shared memory : Many workers (threads), but a single copy of data. Need to control access to resources.
- IC-Ferst runs in parallel via MPI (distributed memory)
- Future: OpenMP threading for shared memory runs.

Now for a short example of the advantages and pitfalls of a distributed computing job:

Can I have 3 volunteers from the audience please?

Now for a short example of the advantages and pitfalls of a distributed computing job:

Can I have 3 volunteers from the audience please?

Process One, please answer the questions on the next slide as fast as you can:

★ 문 ► ★ 문 ►

• Can I have 3 volunteers from the audience please?

Process One, please answer the questions on this slide as fast as you can:

AMCG

Process One:

- 1. What's your (real) name?
- 2. What is 3 + 4?
- 3. What is 2×7 ?
- 4. What is $12 \div 2?$
- 5. What's your favourite animal?

Processes One, Two & Three please answer your questions on the next slide as fast as you can:

Process One: Process Two:

Process Three:

Parallelism in IC-Ferst; James Percival

Processes One, Two & Three please answer your questions on this slide as fast as you can:

Process One:

- 1. What's your name?
- 2. What is 2 + 3?
- 3. What is 4×3 ?
- 4. What's your favourite colour?
- 5. What's Process Three's favourite colour?

Process Two:

- 1. What's your name?
- 2. What is 7 6?
- 3. What's your favourite colour?
- 4. What's Process One's favourite colour?

Process Three:

- 1. What's your name?
- 2. What is 2 + 9?
- 3. What is $9 \div 3$?
- 4. What's your favourite colour?
- 5. What's Process Two's favourite colour?

∢ 臣 ▶ ∢ 臣 ▶

Imperial College London

Parallel Simulations

- ▶ How to run IC-Ferst in parallel:
 - No changes to the .mpml required!
 - Parallel compatible preconditioner (not eisenstat or lu)
 - Optional: Remove unwanted fields from output (.stat and .vtu)
 - Need to decompose the mesh
 - Tools provided: fldecomp
 - Build with: make fltools

Imperial College London

Mesh decomposition

- Mesh decomposition before the run:
 - fldecomp -n 4 -m gmsh mesh_name
 - Decomposes mesh named mesh_name.msh
 - Now run this on 4 processors: mpiexec -n 4 multiphase_prototype my_cool_simulation.mpml

AMCG

Outputs in new format, .pvtu, which can be read by Paraview.