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Numerical Solutions to PDEs
Mathematical descriptions of the equations governing physical
processes are often in the form of partial differential equations (PDEs).
Variable values are functions of time and satisfy relationships between
variables and their partial derivatives.

Examples

∂T
∂t

= κ
∂2T
∂x2 , (heat equation)

∂2a
∂t2 = c2 ∂2a

∂x2 (wave equation)

∂τ

∂t
+ u

∂τ

∂x
= κ

∂2τ

∂2x
(advection-diffusion equation)
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Numerical Solutions to PDEs

Solving PDEs assumes knowledge of the variables at an infinite number
of locations in space and time. However memory available in computers
(and humans) is finite. Equations must be discretized to create a
smaller (and easier to solve) problem. Eg. to a matrix problem like 3 2 0

4 4 1
0 2 3

 x
y
z

 =

 1
3
2

 ,

or, in a more general form,

Ax = b.
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Numerical Solutions to PDEs

Some standard techniques for discretization are:
1. Finite difference methods.
2. Finite volume methods.
3. Spectral methods.
4. Finite element methods.

The Fluidity model primarily implements the last of these.
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Finite Difference Methods

I Reduce problem domain
to finite set of points.

I Replace exact
derivatives with
approximate difference
equations.

df
dx
≈ ∆f

∆x
=

f (xi+1)− f (xi−1)

xi+1 − xi−1
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Finite Volume Methods
I Break problem domain

into a finite set of
sub-\emph{volumes}.

I Solve for volume
integral of quantities
inside. Typically reduces
problem into flux
calculation across faces
of the volume.

I If fluxes depend on
derivatives then another
method (e.g. finite
differences) must be
used to find them.

d
dt

∫
Ωi

ρdV = ∑
faces

∫
δΩ(j)

i

ρu ·ndS
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Spectral Methods

I Represent variables
as (limit of) sum of
orthogonal basis
functions.

I Global basis
functions vary over
entire domain.

I Truncate infinite
series and calculate
behaviour of finite
set of coefficients.

f (x) =
∞

∑
n=1

an cos
(

n
πx
L

)
+ bn sin

(
n

πx
L

)
≈

N

∑
n=1

an cos
(

n
πx
L

)
+ bn sin

(
n

πx
L

)
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Spectral Methods
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Spectral Methods
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Spectral Methods
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Spectral Methods
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Finite Element Methods

I Break the problem domain down into a finite set of sub-volumes
(elements).

I Represent variables as a sum of basis functions.
I Basis functions non-zero only on local set of subvolumes.
I Solve integral equation form of PDE.
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Hybrid Methods

I Very common to combine these different approaches
I Couple finite volume method for globally conserved quanity to
finite difference method to calculate fluxes

I Couple finite volume method for globally conserved quanity to
finite element method to calculate fluxes. “Control Volume”
method

I Fluidity velocity solver: Finite element method in space, finite
difference in time
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Poisson Equation: Pressure in Navier-Stokes

Incompressible Navier-Stokes equations

∂u
∂t

+ u · ∇u = −∇p + ν∇2u, (momentum)

∇ · u = 0, (continuity)

Taking divergence

∂

∂t
(∇ · u)︸ ︷︷ ︸
=0

+∇ · (u · ∇u) = −∇2p + ν∇2∇ · u︸ ︷︷ ︸
=0

.

I.e.
∇2p = −∇ · (u · ∇u) .
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Poisson Equation

General form of this equation

Poisson Equation

∇2ψ + f (x) = 0, ∀x ∈ Ω (*)

In 1D, setting Ω to the unit interval:

∂2ψ

∂x2 + f (x) = 0 ∀x ∈ (0, 1).

This is the strong form of the Poisson equation.
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Strong Form vs. Weak Form of an Equation

Strong form
Equation (*) true
individually for each point in
space,

∇2ψ + f (x) = 0,

for all x in domain Ω.
Test a ψ by checking
equation holds individually
for each point in space.

Weak form
Integral equation holds for all
choices of a ‘test function’, φ,∫

Ω
φ
(
∇2ψ + f

)
dV = 0,

where φ : Ω→ R is from a
function space defined later.
Test possible ψ (‘trial function’)
by checking integral equation
holds for all test functions, φ.
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Quick Review of Vector Spaces

A set, V , is a vector space if it has + (addition) and scalar
multiplication operators where

a + (b + c) = (a + b) + c, (associativity)
a + b = b + a, (commutivity)

there exists 0 ∈ V such that a + 0 = a, for all a ∈ V ,
for all a there exists − a ∈ V such that a + (−a) = 0,

α (a + b) = αa + αb, (distributivity I)
(α + β) a = αa + βa, (distributivity II)

α (βa) = (αβ) a,
1a = a.
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Vector Spaces

Functions are a vector space under the following definitions of addition
and scalar multiplication:

(f + g) (x) = f (x) + g (x) ,
(αf ) (x) = α (f (x)) .

I.e. functions are added/multiplied pointwise based on their result.
Necessary axioms all follow from the normal rules of
addition/multiplication.

Intro to FEM for Fluids; James Percival



Vector Spaces
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Vector Spaces
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Vector Spaces
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Vector Spaces

Within the space of functions there are many smaller subspaces. Eg:

Examples
Polynomials f (x) = 1 + 3x + 4x2 + 5x3

Functions on an interval f (x) =


0 x < 0,
ex 0 ≤ x ≤ 1,
0 x > 1.

Twice differentiable functions f (x) =

{
x2 + 2, x < 0,
2 (ex − x) . x ≥ 0.
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Vector Spaces

Key idea of finite element method:
I Desire an exact solution ψ, from an inifinite dimensional vector

space, V , which satisfies weak form equation, for test functions φ
in U .

I Find ψδ in approximate vector (sub)space V δ ⊂ V with finite
representation, which satisfies same weak form equation, for test
functions φδ in approximate space U δ ⊂ U .

I Expectation that as δ→ 0, V δ → V and ψδ → ψ.
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Strong and Weak Forms

A solution to the strong form of the equations will be a solution to the
weak form equations:
If ∇2ψ + f = 0 then∫

φ
(
∇2ψ + f

)
dV =

∫
φ · 0 dV = 0,

independent of φ, i.e. for any possible choice of test space.
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Strong and Weak Forms

A solution to the weak form of the equations may be a solution to the
strong equations if it is smooth enough.
The weak formulation extends the equations to allow non-smooth
solutions which exist in a distributional sense.

Examples of common distributions

δ (x) ,
∫ a

−∞
f (x) δ (x) =

{
f (0) , a > 0,
0, a < 0.

(Dirac delta)

H (x) :=
∫ x

−∞
δ (s) ds =

{
0, x < 0,
1, x > 0.

(Heaviside)
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Example of a Weak Nonclassical Solution

ψ−∇2ψ (x) = aδ (X− x) (Helmholtz)

ψ =

{
aexp (x−X) x ≤ X,
a exp (X− x) x > X
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Review of Section

I Strong form of PDEs prescribes behaviour pointwise
I Finite difference methods work at a finite number of points

I Weak form of PDEs prescribes behaviour over intervals (areas,
volumes etc.)

I Finite element methods work over a finite number of intervals

I Functions live in vector spaces, which can be approximated.
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Boundary Conditions for Weak Equations

Two possible forms of boundary condition for a solution to the Poisson
equation to be well posed:
1. Dirichlet: ψ(x) = a(x) for x ∈ A ⊂ δΩ,

2. Neumann: ∂ψ
∂x = b (x) for x ∈ B ⊂ δΩ.

In the Galerkin formulation, Dirichlet boundary conditions typically
require explicit modification of the structure of the problem to be
solved, whereas Neumann conditions are dealt with naturally as part of
the formulation. We’ll use a Dirichlet boundary condition at x = 0, and
a Neumann condition at x = 1 in our example.
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Natural Boundary Conditions
Our weak form equation is∫ 1

0
φ

(
∂2ψ

∂x2 + f
)

dx = 0,

Integrate by parts,∫ 1

0

∂φ

∂x
∂ψ

∂x
dx−

∫ 1

0
φf dx = −

[
φ

∂ψ

∂x

]1

0
.

Chose φ to vanish on Dirichlet boundaries (and set ψ = a(0)), and use
our knowlege of ∂ψ

∂x on Neumann boundaries:∫ 1

0

∂φ

∂x
∂ψ

∂x
dx =

∫ 1

0
φf dx− φ (1) b (1)
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Dirichlet Boundary Conditions
Dirichlet boundary conditions can be enforced through splitting
solution into two parts

ψ = ψ0 + ψd

where ψd is any (chosen) function satisfying

ψd (0) = a(0),
∂ψd
∂x

(1) = 0

while ψ0 satisfies a modified weak equation, with ψd on r.h.s,

ψ0(0) = 0,∫ 1

0

∂φ

∂x
∂ψ0

∂x
dx =

∫ 1

0
φf dx− φ (1) b (1)−

∫ 1

0

∂φ

∂x
∂ψd
∂x

dx,

Note ψ0 vanishes on the Dirichlet boundaries, same condition we apply
to φ.
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Boundary Conditions: Strong vs. Weak

More generally, implementations of finite element boundary conditions
come in two flavours, strong and weak.

Strong form bc.s
Information contained in
boundary condition appears
implicitly in the weak form
of the PDE. Solve by lifting
method.

Weak form bcs.
Information contained in
boundary condition appears
explicitly in surface integrals
in the weak form of the
PDE. Solve by direct
substitution.
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Boundary Conditions: Strong vs. Weak

Which method to apply depends on the details of both the original
PDE and the weak form to be solved. Sometimes both are possible.
For example, consider solving the advection equation,

∂τ

∂t
+ a · ∇τ = 0,

for a tracer τ, given a known velocity field, a and dirichlet boundary
conditions at a inlet.
Note the odd number of spatial derivatives, whereas even number for
Poisson equation.
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Boundary Conditions: Strong vs. Weak

Strong form bc.s
Solve∫

Ω
φ

(
∂τ

∂t
+ a · ∇τ

)
dx = 0,

Dirichlet bcs must be
applied strongly.

Weak form bcs.
Integrate by parts,∫

Ω
φ

∂τ

∂t
− τ∇ · (φa) dx

= −
∫

δΩ+
a · nφτb dS,

where τb is the Dirichlet bc,
applied weakly.

When using this sort of weak boundary condition, values may not be
quite what you’d expect, however fluxes should be right.
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Finite Element Basis Functions

Need discrete finite dimensional representation of problem to do
numerical calculations on a computer. Set

ψδ (x) =
N

∑
i=1

ψ̂iNi (x)

where ψ̂i ∈ R is a scalar parameter and Ni : Ω→ R is a fixed shape
function specifing spatial dependence. Can do the same for the space
of test functions, φ.
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Finite Element Functions

For our 1D Poisson equation example we can choose to use the set of
continuous, piecewise linear functions (’shape functions’) on
subdivisions of the unit interval.

Ni =


0, x ≤ x(i−1),
x−x(i−1)
xi−x(i−1)

, x(i−1) < x ≤ xi,
x(i+1)−x
x(i+1)−xi

, xi < x ≤ x(i+1),

0. x > x(i+1).

Functions are equal to 1 at the set of points [0, x1,x2, . . . xn−1, 1],
sometimes called ’nodes’ or ’degrees of freedom’. The subdivisions of
Ω over which the Nis are smooth are often called elements.
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Galerkin Approximation
To obtain the Galerkin approximation of the Poisson equation, we find
the (unique) solution of the weak form equation when ψ and φ are
approximated by our finite element expansions,

ψδ =
n

∑
i=0

ψ̂iNi,

φδ =
n

∑
j=0

φ̂jNj.

The ψδ are called trial functions and the function space they come
from is the trial space. The φδare called test functions and live in the
trial space. Computation involves obtaining the finite number of ψ̂i.
Can then be solved on a computer.
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Galerkin Approximation
Substituing the finite representations into (*) we get

∫ n

∑
j=1

φ̂j
∂Nj

∂x

N

∑
i=1

ψ̂i
∂Ni
∂x

dV + vδ
Nb (xN) =

∫ n

∑
j=1

φ̂δ
j Njf dV,

φ̂j


[∫ ∂Nj

∂x
∂Ni
∂x

dV
]

︸ ︷︷ ︸
matrix Dij

ψ̂i −
∫

fNjdV +

{
0, j = 1, . . . n− 1
b (xn) , j = n


= 0

If bracket vanishes, solution applies for any φ̂j, so we can drop them.
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The Right Hand Side

Generally the right hand side of the equation is known explicitly as a
function f : Ω→ R. Hence

∫ 1
0 φδf dx can be calculated exactly. In

practice (especially for coupled problems,) it is usually represented in
the approximate function space,

f δ (x) =
N

∑
i=1

f̂iNi (x) ,

where, for our choice of shape functions,

f̂i = f (xi) .
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Finite Element Poisson Matrix Problem
Dirichlet condition: ψ̂0 = a(0), turns up on right hand side:
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Local to global

Note that

Dij =
∫

Ω

∂Ni
∂x

∂Nj

∂x
dV,

= ∑
k

∫
Ω(k)

∂Ni
∂x

∂Nj

∂x
dV,

where the Ωk = [xi, xi+1] only contribute if

∂Ni
∂x
6= 0,

∂Nj

∂x
6= 0.

Global matrix assembled from sum of local integrals over elements.
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Finite Difference Poisson Matrix Problem
Finite Difference discretization of same problem:
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Finite Volume Poisson Matrix Problem
Finite volume discretization of same problem. 2 point finite difference
approximation for flux terms:
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Solutions: Finite Element
f = 10 sin (5x) + 1/2 cos (3 (x + 1/2)) , ψ (0) = 0, dψ

dx = 1 :
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Solutions: Finite Difference
f = 10 sin (5x) + 1/2 cos (3 (x + 1/2)) , ψ (0) = 0, dψ

dx = 1 :
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Solutions: Finite Volume
f = 10 sin (5x) + 1/2 cos (3 (x + 1/2)) , ψ (0) = 0, dψ

dx = 1 :
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Example II: Advection-Diffusion

Use same finite element framework for 1D advection diffusion equation:

∂τ

∂t
+

∂

∂x
(uτ) =

∂

∂x

(
κ

∂τ

∂x

)
∫ 1

0
φ

∂τ

∂t
dx =

∫
∂φ

∂x

(
uτ − κ

∂τ

∂x

)
dx
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Example II: Advection-Diffusion

Given FEM framework, crank the handle to reduce the problem;
Discretize through Finite Element Galerkin Method,

τδ =
n

∑
i=0

τ̂iNτ
i ,

uδ =
n

∑
i=0

ûiNu
i

φδ =
n

∑
i=0

φ̂iNτ
i ,

Note that the method doesn’t require Nu
i = Nτ

i . Mixed formulations
are possible
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Example II: Advection-Diffusion
Following substitution, integrate by parts to obtain

∫ 1

0
NiNj dx︸ ︷︷ ︸

"Mass matrix"Mij

∂τ̂j

∂t
−
∫ 1

0

∂Ni
∂x

(
Nj

n

∑
k=0

ukNu
k − κ

∂Nj

∂x

)
dxτ̂j = 0,

or in matrix form,

M
∂τ

∂t
+ A (u) τ + D (κ) τ = 0,

This is the FEM form of the tracer advection-diffusion equation.
Further details will depend on the choice of shape functions and
timestepping method.
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Review of Section

I Finite element methods solve weak (integral) equations
I Functions get approximated by finite dimensional summations of

functions, non-zero over small regions of problem domain
(elements)

I Linear PDE problem gives a linear (matrix) problem for the ψ̂i.

The efficient computational representation and solution of these sorts
of problems will form the basis of the other session.
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Extensions: Higher dimensions
The linear finite element method extends naturally on simplicies [line
elements, triangle elements, tetrahedrons]. Basis functions are set to 1
at one vertex and to zero on the others. E.g. for triangles:
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Extensions: Higher dimensions
The linear finite element method extends naturally on simplicies [line
elements, triangle elements, tetrahedrons]. Basis functions are set to 1
at one vertex and to zero on the others. E.g. for triangles:
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Extensions: Higher dimensions
The linear finite element method extends naturally on simplicies [line
elements, triangle elements, tetrahedrons]. Basis functions are set to 1
at one vertex and to zero on the others. E.g. for triangles:
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Extensions: Higher dimensions
The linear finite element method extends naturally on simplicies [line
elements, triangle elements, tetrahedrons]. Basis functions are set to 1
at one vertex and to zero on the others. E.g. for triangles:
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Increasing the degrees of freedom

To increase the number of free parameters in the approximate solution
space (and thus attempt to get a more accurate solution) there are
several options:

I More, smaller subdivisions [step size,h]
I This is the system used in Fluidity’s mesh adaptivity.

I Use higher order polynomials, e.g. quadratic functions [polynomial
order, p]

I Use discontinuous functions [Discontinuous Galerkin formulation]
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Increasing the degrees of freedom
I Projection (in black) of smooth function (red).
I Linear, continuous basis, Galerkin method (P1 CG).
I In 1d degrees of freedom ≈ no. of elements
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Increasing the degrees of freedom
I Projection (in black) of smooth function (red), & error (blue).
I Linear, continuous basis, Galerkin method (P1 CG).
I In 1d degrees of freedom ≈ no. of elements
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Increasing the degrees of freedom
I May increase the number of elements
I More elements mean more degrees of freedom
I One of the methods used in Fluidity adaptivity routines
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Increasing the degrees of freedom

Quadratic shape functions

N2i =



0, x ≤ xi−1,
2x2−(3xi−1+xi)x+(xi+xi−1)xi−1

(xi−xi−1)
2 , xi−1 < x ≤ xi,

2x2−(3xi+1+xi)x+(xi+xi+1)xi+1

(xi+1−xi)
2 , xi < x ≤ xi+1,

0. x > xi+1.

N2i+1 =


0, x < xi,

−x2−(xi+1+xi)x+xixi+1

(xi+1−xi)
2 , xi < x ≤ xi+1,

0. x > xi+1.
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Finite Element Functions
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Increasing the degrees of freedom
I Projection of a smooth function.
I Quadratic, continuous basis, Galerkin method (P2 CG).
I In 1d degrees of freedom ≈ 2 × no. of elements.
I Good representation of slowly varying functions
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Increasing the degrees of freedom

Discontinuous linear shape functions

N2i =


0, x ≤ xi,
(xi+1−x)
(xi+1−xi)

, xi < x ≤ xi+1,

0. x > xi+1.

N2i+1 =


0, x < xi,
− (x−xi)

(xi+1−xi)
, xi < x ≤ xi+1,

0. x > xi+1.
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Increasing the degrees of freedom
I Projection of a smooth function.
I Linear, discontinuous basis, Galerkin method (P1 DG).
I In 1d degrees of freedom ≈2 × no. of elements.
I Good representation of discontinuties/fronts/large gradients.
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Review of Section

I The degrees of freedom (and thus size) of a problem can be
increased by:

I increasing the number of element subdivisions (making step size h
smaller)

I increasing the order of the shape functions applied on elements
(increasing polynomial degree, p)

I relaxing continuity constraints at the interface between elements
(discontinuous Galerkin method, nonconforming elements)
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Reassuring Mathematics

This section summarises some useful results from mathematical
analysis for finite element problems. In particular, we note that results
exists to show that, under certain provisos finite element solutions to a
given problem

I exist
I are unique
I converge
I converge to the right answer.
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Choice of Vector Spaces

Going back to the weak form for the original infinite dimensional
problem, ∫

Ω
∇φ · ∇ψ dV =

∫
Ω

φf dV +
∫

δΩN
φb dV,

it is obvious that ψ and ∇ψ must be well behaved enough for these
integrals to exist.
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Choice of Vector Spaces

We require the function is square integrable,

‖ψ‖2 :=
∫

Ω
ψ2 dV < ∞. (1)

(The space of function which satisfy this is normally called L2 (Ω))
and also that

‖∇ψ‖2 :=
∫

Ω
∇ψ · ∇ψ dV < ∞, (2)

Functions which satisfy both (1) & (2) are in the space of square
integrable functions with square integrable derivatives, denoted
H1 (Ω). This is a Sobolev space.
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Weak equations and Bilinear forms

The volume integral in (*) defines a symmetric bilinear form,
a : H1 (Ω)×H1 (Ω)→ R,

a(φ, ψ) :=
∫

Ω
∇ψ · ∇φ dnx.

where

a (φ, ψ) = a (ψ, φ) ,
a (c1φ + c2ξ, ψ) = c1a (φ, ψ) + c2a (ξ, ψ) .
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Lax-Milgram Theorem

Two properties of the bilinear form, a, are used to show well-posedness:

a(φ, ψ) ≤ C ‖ψ‖ ‖φ‖ for some C > 0, (continuity)

a(ψ, ψ) ≥ c ‖ψ‖2 for some c>0. (coercive/elliptic)
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Well posedness - existence

Existence follows from application of Riesz representation theorem to
the Hilbert space problem

a (u, v) = f (v) ,

Precise details lie outside of the scope of this lecture, but effectively
guarantees an “inverse” to the map

φv (u) = a (u, v) ,

so that for sufficiently smooth data we can always get a solution.
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Well posedness - uniqueness:

Suppose there are two different solutions, ψ1 and ψ2, i.e.

a (φ, ψ1) = a (φ, ψ2) =
∫

Ω
φf dnx, for all φ ∈ H1 (Ω) .

Then
a (φ, ψ1 − ψ2) = 0

but ψ1 − ψ2 ∈ H1 (Ω) , so can choose to test φ = ψ1 − ψ2 Then

a (ψ1 − ψ2, ψ1 − ψ2) = 0 ≥ c ‖ψ1 − ψ2‖2 ,

So ψ1 = ψ2, hence solution is unique.
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Well posedness - convergence

Let ψ ∈ V be exact solution, ψδ ∈ V δ ⊂ V be the finite element
solution ξ ∈ V δ be an arbitrary function. Then ψδ − ξ ∈ V and
ψδ − ξ ∈ V δ and

a(ψδ − ξ︸ ︷︷ ︸
∈V

, ψ) =
∫

Ω

(
ψδ − ξ

)
fdnx (From PDE)

a(ψδ − ξ︸ ︷︷ ︸
∈V◦

, ψδ) =
∫

Ω

(
ψδ − ξ

)
fdnx (FEM)
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Well posedness - convergence

c
∥∥∥ψ− ψδ

∥∥∥2
≤a
(

ψ− ψδ, ψ− ψδ
)

,

= a
(

ψ− ψδ, ψ− ψδ) + a(ψ− ψδ, ψδ − ξ
)

+ a
(

ψδ − ξ, ψδ
)
− a

(
ψδ − ξ, ψ

)
,

= a
(

ψ− ψδ, ψ− ψδ + ψδ − ξ
)

−
∫

Ω

(
ψδ − ξ

)
fdnx +

∫
Ω

(
ψδ − ξ

)
fdnx,

= a
(

ψ− ψδ, ψ− ξ
)
≤ C

∥∥∥ψ− ψδ
∥∥∥ ‖ψ− ξ‖ .
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Well posedness - convergence
Hence it is guaranteed (Cea’s lemma)∥∥∥ψ− ψδ

∥∥∥ ≤ C
c

inf
ξ∈V δ
‖ψ− ξ‖ .

Choose ξ to be linear projection of ψ, i.e ξ (xi) = ψ (xi) , ∂2ξ
∂x2 = 0, then

‖ψ− Pψ‖ ≤ α sup
Ωi

hi sup
x∈Ω

∣∣∣∣∂2ψ

∂x2

∣∣∣∣
Hence ∥∥∥ψ− ψδ

∥∥∥ ≤ αC
c

sup
Ωi

hi sup
x∈Ω

∣∣∣∣∂2ψ

∂x2

∣∣∣∣∥∥∥ψ− ψδ
∥∥∥→ 0 as sup

Ωi

hi → 0.
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Review of Section

We have shown that finite element approximations to the solutions to
PDEs

I are unique,
I converge,
I and converge to the right answer.

We have also given a hint that they exist. We have also shown that by
using knowledge about the form of the solution we can choose
elements to minimize the estimated error for a given number of degrees
of freedom.
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Quadrature
Numerical method to calculate/approximate integrals:

∫ b

a
f (x) dnx ≈

N

∑
x=1

wif (pi)

a b
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Quadrature

Some famous quadratures:
1. Midpoint rule [one point method]

w = a− b, p =
a + b

2
,

2. Simpson’s rule [3 point method]

w1 =
a− b

6
, w2 =

4 (a− b)
6

, w3 =
a− b

6
,

p1 = a, p2 =
a + b

2
, p3 = b,
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Quadrature
A quadrature is called exact for functions where∫ b

a
f (x) dnx =

N

∑
x=1

wif (pi) .

The degree (or order) of a quadrature rule over an interval is the
largest integer, n such that method is exact for all

pn = a0xn + a1xn−1 + . . . an ai ∈ R.

For a FE method, would like a quadrature which captures the “worst”
order of the terms in the integral, eg∫ xj+1

xj

∇N(τ)
i N(u)

j N(τ)
j dx.
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Final Summary

I Finite element methods solve a weak form of the exact equations
in an approximate solution space.

I The approximate solution is defined (almost) everywhere.
I Neuman conditions dealt with implicitly inside formulation
I Dirichlet conditions appear in right hand side (as in finite

difference methods).
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