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Outline

 Background (What is Mesh Adaptivity?)
 Motivation (Why Adapt Meshes?)
* Current Methodology (How does IC-FERST adapt meshes?)

e Discussion (How to be better?)
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Background — The goals of numerical simulation

In numerical simulation there
are 3 key concerns:

« Accuracy - simulation is a Increase ﬁ Increase
good representation of real _ - dissipati
behaviour of the system resolution I551pation

« Stability — answers remain
physically relevant.

« Cost - Time/expense of
generating solution

N/,

Use lower
Often imposssible to achieve order
all of fast, accurate & robust. method
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Background — Why discretize?

Computers (& humans) have
finite memories

PDEs contain information at
infinite no. of scales

0pS
Pk + v - uParey — g
ot
S = S(x,t)
Notice!
| integer Ml @ AN
. discretization
16 bit 2100 methods often
32 bit -2,147,4 combined.
64 bit -9,223,372,036,854,775,808 to

+9,223,372,036,854,775,807
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Physics in PDEs converted

into linear algebra via a choice
of discretization

1. Finite difference

2. Finite Volume

3. Spectral Methods

4. Finite element

5. Mesh Free methods

loating point

+1.4 x10-45 to 3.4 x1038
(~7.2 sig. fig)

10398 to 103%8 ( 16 sig.
fig)
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Background - Finite Differences

Finite differences — Schoolboy calculus

Av &f) -, Aw df

d
f(a—l—A:z:):f(a)-l—A:z:—f 5 T2 6 dad

dx

r=a r=a r=a

df _ fla+Az) = fla— Aa)

* - dr 2Ax

f(x)

Notice!
Implementation is
usually simpler (&
more accurate) on
structured uniform
meshes
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Background — Finite Volumes

“Lego science”

d
dt/Q,'Odv: Z/ ~pu-ndS

(7)
v faces osY;

Notice!
Needs coupling to
alternative method
for derivatives

Bonus!
Ensures local
conservation for
(almost) free
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Background — Spectral Methods

Spectral methods - basis functions

/ cos(ax) cos(bx)dr = Cdyy
Q

Notice!
Doesn’t much like
boundary conditions
or complex

! geometries
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Background — Finite Elements

Couple basis functions
+ partition into simple shapes

;/QN,;NJ-% dV:/QNif(a:)dV
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Background - Mesh Free Methods - DEM

FE
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What is FEMDEM?

Website:
http://www.vgest.net

Xiang, J. et al. 2009. Finite
strain, finite rotation
quadratic tetrahedral element
for the combined finite-
discrete element method. Int
Journal for Numerical
Methods in Engineering DOI:
10.1002/nme.2599
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Mesh Free Methods

Smoothed Particle Hydrodynamics (SPH)

Particle Count ¢ 10012

Slide
from
Youtube

M. Mduller
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Background — Hybrid Methods

Methods combined.

Eg. Finite Element Method+ Discrete Element Method = FEMDEM

Control volumes: - Just finite volumes piggybacking on finite elements

AAATS
"'VV
SO0,

XKL A

AVANAVAVA Vg
AR vas A

Voronoi dual mesh
Control volumes

Finite Element Mesh Finite element “nodes”
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Motivation — Meshes & Grids
Meshs/grids are ubiquitous Trade-off: high resolution
in computational science discretizations often more

_ . accurate, but take more
Discretization imposes length  time to simulate

scale on the problem

Idea: Only put high

resolution “where
it needs to be”
dynamically.

= .
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Motivation - AMR

Idea has been applied on structured meshes:

Noticel ‘'ve Mesh Refinement (AMR)

The video is created
by hand, coarsening
the high res photo.
No algorithm.
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Motivation - AMR

Adaptive Mesh Refinement:

‘ | Refinement forms a tree:
6 Cell BBO2 is in cell cy is in Cell C6

¢ 01 1
o Convenient for

s AA BB ) )
5| . implementation

4l | Less good for physics

« Lots of wasted resolution

@ by d | (especially in 3D)

« Can only coarsen on
predefined scales

« Factors of 2 everywhere.
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Motivation/Methodology

Fluidity uses unstructured meshes. Can we do better?

Page 16
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Motivation/Methodology

Yes:
« Fewer wasted regions of high resolution
« Not forced to preserve initial orientation or grid lengths

Length scales can differ along/across structures (anisotropy)
Fewer factors of 2.

L~
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Methodology - An example of Mesh Adaptivity

Advection of a Gaussian bubble

T "y 0 0 _xt

Notice!
Don’t adapt every

timestep (dispersive &

expensive), do it
every 10-100
timesteps.

Analytic
solution

Fixed Adaptive
mesh 1 mesh
Fixed Adaptive
mesh 1 mesh

Fixed
mesh 2

Fixed
mesh 2
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Mesh Adaptivity: Faster & more accurate solutions

2 orders of magnitude smaller problem/half error 30x speed up
1 10% —

»—x Fixed Mesh _
e Adaptive Mesh |

Notice!

Unstructured meshes

are slower than

structured for given

size.

Adaptivity is important
U.1l S 10

172 . . . . ) . . . . —
0.01 ARt 10 10°

1000 1000 100000
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Current Methodology — h adaptivity

h - for step length
like delta x in
finite difference notation

Just like AMR for elements
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Current Methodology — r adaptivity

r for
redistricution/
repositioning
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Current Methodology — p adaptivity

p - adaptivity

P for polynomial
order




Imperial College

Current Methodology — Error estimates

For sufficiently nice PDEs and

. . . I/
Motivation: Cea’s Lemma linear (or better) elements

CITOr Hwexact B ¢5H <O Hwexact B wproj H

< C2Zh2 max

xel)

(9332

Notice!

Haven't said
anything about
constant C
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Current Methodology — Interpolation error estimates

//"\s /

\/\/

Plotting a linear function
with areas of high
curvature coloured red

Places where a
linear approximation
is bad.
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Current Methodology — Interpolation error estimates

In higher dimensions, error estimate is a function of the Hessian
and the edge vectors.

02 02 92 \

83}2 8x28y 8:1:2827

_ o“ Y oakl) okl

H (w) o Ox Oy 8512 Oyoz
\ 0%y 9%y B’y /

dxdz  Oyoz 0z2

error ~ E vi My
k

M = M(H(@))

The vs are the edges of the mesh “Mesh metric”
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Current Methodology — Interpolation error estimates

7-{11

Pick out areas of
curvature in physical
space or in value.

Y

Anistropic:
Allowable scales
along a front larger
than acrros it.

Y
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Current Methodology — Interpolation Error Estimates

Problem: we don’t know yexac
Answer: Use y° instead.

Estimate second derivatives
from the finite element data

Need a signal present in the
data before we can adapt to it

1
Try to extremize I(’U) — E —'U]ZM'Uk —1
€
k

The vs are the edges of the mesh M — M (H (wé))
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Current Methodology — Optimization

Two possibilies once metric is

calculated:

1. Global remeshing: “Slash and burn”
Delete old mesh structure and
create new mesh from blank sheet
of paper

2. Local remeshing: “Patch and fix”
Preserve the old mesh in regions
where it is adequate

IC-FERST impliments the second option.

« Advatanges in speed, data retention
and parallelism

Apply hr adaptivity in the regions where
fixing is necessary: Add, remove nodes,
reconnect nodes and move nodes.

'

(a) Face to edge (b) Edge swapping

Fig. 1. Digram showing: (a) edge to face and face to edge swapping; (b) edge to edge swapping with four elements.

Pain et al. 2001

node
deletion

= =/
@ () =7

Figure 1. Local element operations used to optimize the mesh in two dimensions. (@) Node insertior
or edge split. (b) Node deletion or edge collapse. (¢) Edge swap. (d) Node movement

node
insertion

Piggott et al 2009
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Mesh metrics - Metric Advection
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For advection dominated

problems, treat metric as another

advected quantity.
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Mesh metrics - bounding edge length

Usually have constraints on:
« Minimum edge length [cost]
« Maximum edge length [accuracy]

Simple - do surgery on specified metric
after it's calculated

ailr a21

az1 a2
B di O T
—r(Q 0 )R

r=(0l o)

o
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Mesh metrics - Gradation

Often a bad idea to have length scales
changing very rapidly between
neighbouring elements. (conditioning)

Post-processing of M can enforce smooth

increases in the metric away from
minima:

Isotropic
lwill /lvs]] < 1.5

Anisotropic

v; - v < ||lv?
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Mesh Metrics - Other knobs and levers

Aspect ratio —like gradation, but edges of a single element

“Fixed” surfaces
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Mesh — Metrics - Aside on parallelism

Shared Memory

Multiple processors shared memory
(RAM/Hard disk etc)
Threading

“Painting a wall/Piano duet”

S G
/ System Bus or | Crossbar Switch /——r

pd Memory /

L

Communication fast, but hard to scale

Not currently implemented in IC-FERST
but in use in single-phase Fluidity

Distributed Memory

Multiple systems each have
their own RAM/hard disk and
communicate over a LAN.

“Filming a movie
[

| L] L

Scales well, but
communication is slow.

Implimented and under
testing in IC-FERST
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Mesh Metrics - Parallel

IC FERST uses distributed

Absolute Permeability Ratio memory paradigm for parallelism.

20 40

,_LIIIIIIIIIIIIIIIII!l

Each process acts independently and
1 100 communicates information as needed.

QOil Saturation

0.8

For adaptivity this means locking
boundary nodes to other

processes, then adapting the rest
'E of the domain as in serial.
—;O.é Once new mesh is found, nodes
E are redistributed (hopefully
i shifting the ownership boundaries)

This loop is then repeated several
times.
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Current Methodology — mesh to mesh interpolation

Data on old mesh Data on new mesh?
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Interpolation — Method 1 “Consistent” Interpolation

Set values at new nodes to be Pros:
spatial value on old finite Cheap

element representation Bounded
Gives original data

back if mesh doesn’t
change

e — g () = SN () 1 con

Nonconservative

: :
To Ty T2 T3 Ty s
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Interpolation - Method 2 - Grandy Interpolation

1. Average mesh data
onto old elements
as flat functions.

2. Calculate average
on new elements

3. Project back to
original shapes.

Pros:
Cheap(ish)
Bounded
Local

Cons:
Dissipative
especially for
discontinuous
fields
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Supermeshing

FE solutions/test functions
piecewise smooth over mesh
elements

Elements of supermesh: old
variables and new test fns both
smooth.

No jumps.

Allows efficient
conservative mesh to
mesh interpolation via P. E. Farrell & J. R. Maddison (2011)

projection methods Computer Methods in Applied
Mechanics and Engineering
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Interpolation - Galerkin Projection

Galerkin Finite Element solution to

wDeW _ 2pOld

/ NneWNnewwnerV Z / NneWNkOldwOld

nght hand side is trickier
Left hand side is usual mass matrix Supermeshing to the rescue!

Pros
Conservative
Local

Cons

No bounding

(more) expensive

Questions over control volumes




Imperial College
London

Discussion

Questions to the room:
 What variables are worthwhile to adapt to?
e Saturation? Pressure?
* Do the length-scales inside the absolute
permeability tensor matter?
* Interpolation methods for control volumes in
the fully discontinuous formulation
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The issue with control volumes

Supermeshing is much easier with triangles/tetrahedra than with control volumes

Moving one node creates 3 triangles of overlap for FE

Moving one node creates 7 quadrilaterals and one
triangles of overlap for CV
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Discussion: Choice of Variables to adapt to

Buckley Leverett solution : Saturation

Saturation
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Discussion: Choice of Variables to adapt to

Buckley Leverett solution : Relative Permeability
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Discussion: Choice of Variables to adapt to

Velocity or pressure?

Single phase Darcy flow

h tw r medi
throug two porous edia phase1::Permeability

Ee—]Z

“8e-13

Prescribed pressure
difference
“6e-13

K
“4e-13

Eze-w

le-14
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Discussion: Choice of Variables to adapt to

Velocity or pressure? Velocity

Pressure

phase 1::Pressure o D
ooooo e
—750000 R
500000 ‘ '
=
N
250000 === —__ =
= %9;
- E— ==
=T = - -
T = — >
E— e -
% /_?
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Discussion: Choice of Variables to adapt to

Velocity or pressure? Velocity

Pressure
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Discussion: Choice of Variables to adapt to

Velocity or pressure? Velocity

Pressure
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Discussion: Choice of Variables to adapt to

Velocity or pressure? Velocity

Pressure
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Any further points?

Thank you very much for your input

j.percival@imperial.ac.uk
Room 4.85 RSM
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